Hereinafter we will refer to $0.9 \le x \le 1.0$ as the first-order region and to $0 \le x < 0.9$ as the second-order region.

In Fig. 4, the initial pressure derivative of the FM to PM transition temperature, ∂ T_c/ ∂ P, is plotted as a function of concentration. The pressure derivatives were determined to within $\pm 0.15^{\circ}$ K/kbar. For MnSb our measured pressure derivative of -3.0° K/kbar is in good agreement with the value -3.2° K/kbar as reported by Hirone et al. ²⁶ It is observed that ∂ T_c/ ∂ P changes almost precipitously in a very narrow concentration range (\sim 3%) demarcating the first and second-order regions. It should be remarked that the x = 0.88 material exhibited no thermal hysteresis at 4.5 kbar -- indicating that the transition remained second-order up to this pressure limit. (According to the Bean-Rodbell model, ²⁷ it is possible that a second-order transition can be forced into a first-order transition under sufficient pressure; we shall comment more on this in Sec. IV.)

In Fig. 5 a portion of the temperature versus pressure magnetic phase diagram for MnAs and MnAs_{0.9}Sb_{0.1} is shown. Our results for MnAs are in good agreement with the result of Menyuk et al. 1 It is observed, as speculated in Sec. I, that the substitution of 10% Sb for As does indeed increase the critical pressure required to stabilize the orthorhombic phase. The increase in critical pressure is approximately 0.75 - 1 kbar.

IV. DISCUSSION

In part A of this section we will discuss the solid solutions which exhibit second-order behavior. The results on these materials will be analyzed in terms of the itinerant FM model as presented in Sec. II. In part B the alloys which exhibit a first-order behavior will be discussed in terms of the model proposed by Goodenough and Kafalas. In addition, some comments will also be made on the Bean-Rodbell model proposed prediction of pressure induced second-order to first-order behavior and on the equivalence of the itinerant electron FM and the Bean-Rodbell models.

A. Second-Order Behavior

In Fig. 6, $\partial T_c/\partial P$ is plotted as a function of T_c for the MnAs Sb 1-x solid solutions in the concentration range $0 \le x \le 0.8$. For comparison, the Fe-Ni, Fe-Pd, and Fe-Pt Invar alloys data of Wayne and Bartel²² are included. Similar to the Invar alloys, we observe a T_c^{-1} type of behavior as predicted by Eq. (12) when the second term in Eq. (12) dominates.

The volume derivative of T_c is calculated from $\partial T_c/\partial P$ where the compressibility for the solid solutions was obtained by a linear extrapolation between the values of 2.2 \pm 0.5 \times 10⁻³ kbar⁻¹ for MnSb²⁸ and 4.55 \times 10⁻³ kbar⁻¹ for MnAs.¹ The values for Γ are given in Table I. We observe that the values of Γ increase with increasing As concentration and that the magnitude of Γ is of the same order of magnitude as the first term in Eq. (10). In previous works on the Invar alloys¹¹ and $ZrZn_2^{9-12}$, it was observed that $\Gamma >> 5/3$ and so the first term of Eq. (10) could be neglected. In the case of the MnAs_xSb_{1-x} solid solutions, this factor of 5/3 must be included in any calculation of band parameters.

In Table I we give the results of the calculation of \overline{I}_{max} from Eq. (15) for the solid solutions $0 \le x \le 0.80$ where we assume 3 ln $I_b/3$ ln V = 0. The quoted error in the compressibility for MnSb will introduce an uncertainty of ± 0.03 in the values for \overline{I}_{max} . We observe that \overline{I}_{max} decreases with increasing As concentration. According to Wohlfarth's elassification, these values of \overline{I}_{max} indicate that MnSb is approaching a strong itinerant FM, and the solid solutions are becoming weaker itinerant FM's with increasing As concentration. These values of \overline{I}_{max} for the MnAs Sb $_{1-x}$ solid solutions are comparable with the values for the Invar alloys. 30

From Eq. (3) and using the value of \overline{I} and T_c for MnSb from Table I, we calculate $T_F = 1380\,^\circ\text{K}$. Thus for MnSb we see that $T_c \cong 0.4\,T_F$ which indicates the Sommerfeld expansion is converging; however, the convergence is slower than one would desire. For the materials with x > 0, the convergence is more rapid than for x = 0.